3.2976 \(\int \frac{1}{(1-2 x)^{5/2} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=125 \[ -\frac{202 \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )}{539 \sqrt{33}}+\frac{544 \sqrt{3 x+2} \sqrt{5 x+3}}{17787 \sqrt{1-2 x}}+\frac{4 \sqrt{3 x+2} \sqrt{5 x+3}}{231 (1-2 x)^{3/2}}+\frac{272 E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{539 \sqrt{33}} \]

[Out]

(4*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/(231*(1 - 2*x)^(3/2)) + (544*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/(17787*Sqrt[1 - 2*x]
) + (272*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(539*Sqrt[33]) - (202*EllipticF[ArcSin[Sqrt[3/7]*S
qrt[1 - 2*x]], 35/33])/(539*Sqrt[33])

________________________________________________________________________________________

Rubi [A]  time = 0.0422164, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {104, 152, 158, 113, 119} \[ \frac{544 \sqrt{3 x+2} \sqrt{5 x+3}}{17787 \sqrt{1-2 x}}+\frac{4 \sqrt{3 x+2} \sqrt{5 x+3}}{231 (1-2 x)^{3/2}}-\frac{202 F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{539 \sqrt{33}}+\frac{272 E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{539 \sqrt{33}} \]

Antiderivative was successfully verified.

[In]

Int[1/((1 - 2*x)^(5/2)*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]),x]

[Out]

(4*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/(231*(1 - 2*x)^(3/2)) + (544*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/(17787*Sqrt[1 - 2*x]
) + (272*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(539*Sqrt[33]) - (202*EllipticF[ArcSin[Sqrt[3/7]*S
qrt[1 - 2*x]], 35/33])/(539*Sqrt[33])

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegersQ[2*m, 2*n, 2*p]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{1}{(1-2 x)^{5/2} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx &=\frac{4 \sqrt{2+3 x} \sqrt{3+5 x}}{231 (1-2 x)^{3/2}}-\frac{2}{231} \int \frac{-\frac{121}{2}-15 x}{(1-2 x)^{3/2} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{4 \sqrt{2+3 x} \sqrt{3+5 x}}{231 (1-2 x)^{3/2}}+\frac{544 \sqrt{2+3 x} \sqrt{3+5 x}}{17787 \sqrt{1-2 x}}+\frac{4 \int \frac{\frac{885}{4}-1020 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx}{17787}\\ &=\frac{4 \sqrt{2+3 x} \sqrt{3+5 x}}{231 (1-2 x)^{3/2}}+\frac{544 \sqrt{2+3 x} \sqrt{3+5 x}}{17787 \sqrt{1-2 x}}-\frac{272 \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx}{5929}+\frac{101}{539} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{4 \sqrt{2+3 x} \sqrt{3+5 x}}{231 (1-2 x)^{3/2}}+\frac{544 \sqrt{2+3 x} \sqrt{3+5 x}}{17787 \sqrt{1-2 x}}+\frac{272 E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{539 \sqrt{33}}-\frac{202 F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{539 \sqrt{33}}\\ \end{align*}

Mathematica [A]  time = 0.118468, size = 115, normalized size = 0.92 \[ -\frac{3605 \sqrt{2-4 x} (2 x-1) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )+4 \sqrt{3 x+2} \sqrt{5 x+3} (272 x-213)-272 \sqrt{2-4 x} (2 x-1) E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )}{17787 (1-2 x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - 2*x)^(5/2)*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]),x]

[Out]

-(4*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(-213 + 272*x) - 272*Sqrt[2 - 4*x]*(-1 + 2*x)*EllipticE[ArcSin[Sqrt[2/11]*Sqrt
[3 + 5*x]], -33/2] + 3605*Sqrt[2 - 4*x]*(-1 + 2*x)*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(17787*
(1 - 2*x)^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.02, size = 228, normalized size = 1.8 \begin{align*} -{\frac{1}{17787\, \left ( 2\,x-1 \right ) ^{2} \left ( 15\,{x}^{2}+19\,x+6 \right ) } \left ( 7210\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-544\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-3605\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +272\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +16320\,{x}^{3}+7892\,{x}^{2}-9660\,x-5112 \right ) \sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x)

[Out]

-1/17787*(7210*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(
1/2)-544*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)-3
605*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+272*2^(1
/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+16320*x^3+7892*x
^2-9660*x-5112)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)/(2*x-1)^2/(15*x^2+19*x+6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}{\left (-2 \, x + 1\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(5*x + 3)*sqrt(3*x + 2)*(-2*x + 1)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{120 \, x^{5} - 28 \, x^{4} - 90 \, x^{3} + 27 \, x^{2} + 17 \, x - 6}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(120*x^5 - 28*x^4 - 90*x^3 + 27*x^2 + 17*x - 6), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)**(5/2)/(2+3*x)**(1/2)/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}{\left (-2 \, x + 1\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(5*x + 3)*sqrt(3*x + 2)*(-2*x + 1)^(5/2)), x)